Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
researchsquare; 2023.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2962645.v1

ABSTRACT

The scale and duration of neutralizing antibody responses targeting SARS-CoV-2 viral variants represents a critically important serological parameter that predicts protective immunity for COVID-19. In this study, we describe the development and employment of a new functional assay that measures neutralizing antibodies for SARS-CoV-2 and present longitudinal data illustrating the impact of age, sex and comorbidities on the kinetics and strength of vaccine-induced antibody responses for key variants in an Asian volunteer cohort. We also present an accurate quantitation of serological responses for SARS-CoV-2 that exploits a unique set of in-house, recombinant human monoclonal antibodies targeting the viral Spike and nucleocapsid proteins and demonstrate a reduction in neutralizing antibody titres across all groups six months post-vaccination. We also observe a marked reduction in the serological binding activity and neutralizing responses targeting recently newly emerged Omicron variants including XBB 1.5 and highlight a significant increase in cross-protective neutralizing antibody responses following a third dose (boost) of vaccine. These data illustrate how key virological factors such as immune escape mutations combined with host demographic factors such as age and sex of the vaccinated individual influence the strength and duration of cross-protective serological immunity for COVID-19.


Subject(s)
COVID-19
2.
researchsquare; 2023.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2465199.v1

ABSTRACT

The changing landscape of mutations in the SARS-CoV-2 Spike protein is linked to the emergence of variants, immune-escape and reduced efficacy of the existing repertoire of anti-viral antibodies. A major factor that contributes to the functional activity of the neutralizing antibodies are the intrinsic quaternary changes that occur as a result of antibody-Spike trimer interactions. In this study, we reveal the conformational dynamics and allosteric perturbations linked to binding of human monoclonal antibodies and the viral Spike protein. We identify epitope hotspots of known and novel antibodies, and associated changes in Spike dynamics that define weak, moderate and strong neutralizing antibodies. We show the impact of mutations in Wuhan, Delta, and Omicron variants of concern (VoCs) and differences observed in the antibody-induced conformational changes and illustrate how these render certain antibodies ineffective. Our comparative analyses of the antibody-footprints on Spike variants reveal how antibodies with similar binding affinities may induce destabilizing and stabilizing allosteric effects. These differences have important implications for neutralization efficacy and for developing new antibodies targeting emerging variants. Our results provide mechanistic insights into the functional modes and synergistic behavior of human antibodies against COVID-19, and provide a rationale to design effective antiviral strategies.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
3.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.07.07.22277204

ABSTRACT

Despite human saliva representing a convenient and non-invasive clinical substrate for disease diagnosis and biomonitoring, its widespread utilization has been hampered by technical challenges. The non-Newtonian, heterogenous and highly viscous nature of clinical saliva samples complicate the development of automated fluid handling processes that are vital for accurate diagnoses. Furthermore, conventional saliva processing methods are either resource and/or time intensive precluding certain testing capabilities in low- and middle-income countries, with these challenges aggravated during a pandemic outbreak. The conventional approaches can also potentially alter analyte structure, reducing application opportunities in Point-of-Care diagnostics. To overcome these challenges, we introduce the SHEAR saliva collection device that preprocesses saliva for enhanced interfacing with downstream assays. We demonstrate the device's impact on reducing saliva's viscosity, improving sample uniformity and, increasing diagnostic performance of COVID-19 Rapid Antigen Tests. Importantly, in addition to reporting technical advances and to address downstream implementation factors, we conducted a formal user experience study, which resulted in generally positive comments. Effective implementation of this device could be of support to realize the potential of saliva, particularly in large-scale and/or resource-limited settings for global and community health diagnostics.


Subject(s)
COVID-19
4.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.04.19.22273864

ABSTRACT

Background COVID-19 has been a major public health threat for the past two years, with disproportionate effects on the elderly, immunocompromised, and pregnant women. While much has been done in delineating immune dysfunctions and pathogenesis in the former two groups, less is known about the disease's progression in expectant women and children born to them. To address this knowledge gap, we profiled the immune responses in maternal and child sera as well as breast milk in terms of antibody and cytokine expression and performed histopathological studies on placentae obtained from mothers convalescent from antenatal COVID-19. Methods and findings A total of 17 mother-child dyads (8 cases of antenatal COVID-19 and 9 healthy unrelated controls; 34 individuals in total) were recruited to the Gestational Immunity For Transfer (GIFT) study. Maternal and infant sera, and breast milk samples were collected over the first year of life. All samples were analyzed for IgG and IgA against whole SARS-CoV-2 spike protein, the spike receptor-binding domain (RBD), and previously reported immunodominant epitopes, with conventional ELISA approaches. Cytokine levels were quantified in maternal sera using multiplex microbead-based Luminex arrays. The placentae were examined microscopically. We found high levels of virus-specific IgG in convalescent mothers and similarly elevated titers in newborn children. Virus-specific IgG in infant circulation waned within 3-6 months of life. Virus-specific IgA levels were variable among convalescent individuals' sera and breast milk. Convalescent mothers also showed a blood cytokine signature indicative of a persistent pro-inflammatory state. Four placentae presented signs of acute inflammation marked by neutrophil infiltration even though >50 days had elapsed between virus clearance and delivery. Administration of a single dose of BNT162b2 mRNA vaccine to mothers convalescent from antenatal COVID-19 increased virus-specific IgG and IgA titers in breast milk. Conclusions Antenatal SARS-CoV-2 infection led to high plasma titres of virus-specific antibodies in infants postnatally. However, this was not reflected in milk; milk-borne antibody levels varied widely. Additionally, placentae from COVID-19 positive mothers exhibited signs of acute inflammation with neutrophilic involvement, particularly in the subchorionic region. Virus neutralisation by plasma was not uniformly achieved, and the presence of antibodies targeting known immunodominant epitopes did not assure neutralisation. Antibody transfer ratios and the decay of transplacentally transferred virus-specific antibodies in neonatal circulation resembled that for other pathogens. Convalescent mothers showed signs of chronic inflammation marked by persistently elevated IL17RA levels in their blood. A single dose of the Pfizer BNT162b2 mRNA vaccine provided significant boosts to milk-borne virus-specific antibodies, highlighting the importance of receiving the vaccine even after natural infection with the added benefit of enhanced passive immunity. The study is registered at clinicaltrials.gov under the identifier NCT04802278.


Subject(s)
Breast Neoplasms , COVID-19 , Inflammation
5.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.03.06.22271809

ABSTRACT

The scale and duration of neutralizing antibody responses targeting SARS-CoV-2 viral variants represents a critically important serological parameter that predicts protective immunity for COVID-19. In this study, we present longitudinal data illustrating the impact of age, sex and comorbidities on the kinetics and strength of vaccine-induced neutralizing antibody responses for key variants in an Asian volunteer cohort. We demonstrate a reduction in neutralizing antibody titres across all groups six months post-vaccination and show a marked reduction in the serological binding and neutralizing response targeting Omicron compared to other viral variants. We also highlight the increase in cross-protective neutralizing antibody responses against Omicron induced by a third dose (booster) of vaccine. These data illustrate how key virological factors such as immune escape mutation combined with host factors such as age and sex of the vaccinated individuals influence the strength and duration of cross-protective serological immunity for COVID-19.


Subject(s)
COVID-19
6.
Disease Surveillance ; 36(8):837-844, 2021.
Article in Chinese | CAB Abstracts | ID: covidwho-1524239

ABSTRACT

Foodborne and pet-borne Salmonella infectious diseases have become a major public health problem in the United States. By collecting the data and information of the epidemiological investigations of 153 Salmonella multistate foodborne disease (SMSFBD) outbreaks and 34 Salmonella multistate pet-borne disease (SMSPBD) outbreaks in the United States from 2006 to 2020, we analyzed the distribution of Salmonella serotypes, characteristics of disease burden, food attribution and the corresponding response outcomes, and descripted the trend of changes in food consumption of processed food among different groups in the United States at different social-economic development stages. We also observed that a series of lifestyle changes, such as passive reduction of food exposure risk caused by decreasing social activities and food procurement frequency and increased home stay time due to coronavirus disease 2019 (COVID-19) pandemic. New backyard poultry raising which was popular from 2018 might be potential cause of an outbreak of SMSPBD with the most extensive coverage, the largest number of cases and the most complex Salmonella serotype in the United States in 2020. The results showed that it is necessary to learn from the active surveillance strategies and experiences in the prevention and control of SMSFBD and SMSPBD outbreaks in developed countries to establish the tailored food and cultivation early warning system based on local epidemiological characteristics of the diseases, capacity of the diseases control and prevention, economic and social development level to response the rising challenges of new type salmonellosis.

7.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.09.20.21263808

ABSTRACT

We detected the presence of SARS-CoV-2 specific IgA against all major VOCs in milk out to 6 weeks after D2 of BNT162b2. These likely confer some protection to the breastfed infants, who are ineligible for vaccination and are at risk of severe COVID-19. However, we detected significantly reduced milk IgA binding to VOCs, including the globally dominant Delta variant, suggesting reduced protection for breastfeeding infants. Additionally, these antibodies were significantly reduced by as early as 4-6 weeks after D2.


Subject(s)
COVID-19
8.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.04.27.21256151

ABSTRACT

ImportanceTo examine the impact of SARS-CoV-2 vaccination of lactating mothers on human milk Objective(1) To quantify SARS-CoV-2-specific immunoglobulin A (IgA) and immunoglobulin G (IgG) in human milk of lactating mothers who received the BNT162b2 vaccine, with reference to a cohort convalescent from antenatal COVID-19, and healthy lactating mothers. (2) To detect and quantify vaccine mRNA in human milk after BNT162b2 vaccination. DesignGestational Immunity For Transfer 2 (GIFT-2) is a prospective cohort study of lactating mothers who were due to receive two doses of BNT162b2 vaccine, recruited between 5th February 2021 and 9th February 2021. SettingLactating healthcare workers living in Singapore ParticipantsConvenience sample of ten lactating healthcare workers. Human milk samples were collected at four time points: pre-vaccination, 1-3 days after dose one, 7-10 days after dose one, and 3-7 days after dose two of the BNT162b2 vaccine. ExposureTwo doses of the BNT162b2 vaccine 21 days apart. Main Outcome and Measure(i) SARS-CoV-2-specific IgA and IgG in human milk of lactating mothers who received BNT162b2 vaccine, (ii) Detection and quantification of vaccine mRNA in human milk after BNT162b2 vaccination. ResultsTen lactating healthcare workers aged 32.5 years (range 29 - 42) were recruited, with 40 human milk samples collected and analysed. SARS-CoV-2-specific IgA was predominant in human milk of lactating mothers who received BNT162b2 vaccine. The sharpest rise in antibody production was 3 -7 days after dose two of the BNT162b2 vaccine, with medians of 1110 picomolar of anti-SARS-CoV-2 spike and 374 picomolar of anti-Receptor Binding Domain IgA. Vaccine mRNA was detected only on rare occasions, at a maximum concentration of 2 ng/mL. Conclusions and RelevanceIn this cohort of ten lactating mothers following BNT162b2 vaccination, nine (90%) produced SARS-CoV-2 IgA, and ten (100%) produced IgG in human milk with minimal amounts of vaccine mRNA. Lactating individuals should continue breastfeeding in an uninterrupted manner after receiving mRNA vaccination for SARS-CoV-2. Trial RegistrationRegistered at clinicaltrials.gov (NCT04802278). Key PointsO_ST_ABSQuestionC_ST_ABSDoes BNT162b2 (i) induce the production and secretion of SARS-CoV-2 specific antibodies into human milk, and/or (ii) get secreted into human milk? FindingsIn this cohort that included ten lactating healthcare workers following BNT162b2 vaccination, 90% produced SARS-CoV-2 immunoglobulin A, and 100% produced immunoglobulin G in human milk, with minimal amounts of vaccine mRNA transfer. MeaningLactating individuals should continue breastfeeding in an uninterrupted manner after receiving SARS-CoV-2 mRNA vaccination.


Subject(s)
COVID-19
9.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.03.09.21252639

ABSTRACT

The COVID-19 pandemic has caused an evolving public health crisis and challenged the medical system globally, especially in the rural-stricken regions. There is concern about the spread of coronavirus in regions with lower education level, weaker health systems and underdeveloped economy. The risk of viral transmission in HD center is elevated because of the densely-populated and high mobility in an enclosed environment.This paper demonstrated the main experiences and strategies of preventing secondary COVID-19 transmission in a HD center from a poverty-stricken rural region in China. Data of subjects including 17 medical workers and 249 patients were collected from the HD center in Huangchuan County People's Hospital, Xinyang, China from February to April 2020. It is the first paper to provide the experiences and strategies about preventing COVID-19 secondary transmission in HD center for poverty-stricken rural region.


Subject(s)
COVID-19 , Huntington Disease
10.
Elife ; 102021 02 08.
Article in English | MEDLINE | ID: covidwho-1069944

ABSTRACT

The spike (S) protein is the main handle for SARS-CoV-2 to enter host cells via surface angiotensin-converting enzyme 2 (ACE2) receptors. How ACE2 binding activates proteolysis of S protein is unknown. Here, using amide hydrogen-deuterium exchange mass spectrometry and molecular dynamics simulations, we have mapped the S:ACE2 interaction interface and uncovered long-range allosteric propagation of ACE2 binding to sites necessary for host-mediated proteolysis of S protein, critical for viral host entry. Unexpectedly, ACE2 binding enhances dynamics at a distal S1/S2 cleavage site and flanking protease docking site ~27 Å away while dampening dynamics of the stalk hinge (central helix and heptad repeat [HR]) regions ~130 Å away. This highlights that the stalk and proteolysis sites of the S protein are dynamic hotspots in the prefusion state. Our findings provide a dynamics map of the S:ACE2 interface in solution and also offer mechanistic insights into how ACE2 binding is allosterically coupled to distal proteolytic processing sites and viral-host membrane fusion. Thus, protease docking sites flanking the S1/S2 cleavage site represent alternate allosteric hotspot targets for potential therapeutic development.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/virology , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism , Allosteric Site , Amino Acid Sequence , Angiotensin-Converting Enzyme 2/chemistry , Binding Sites , COVID-19/metabolism , Humans , Mass Spectrometry/methods , Molecular Dynamics Simulation , Protein Binding , Protein Processing, Post-Translational , Proteolysis , Receptors, Virus/chemistry , Receptors, Virus/metabolism , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL